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Abstract 

This summer’s project involved the selection of white dwarf stars for calibration of the Dark 

Energy Survey from data obtained on the WIYN-0.9m telescope at Kitt Peak National 

Observatory (KPNO). The project was comprised of the completion of photometric calibration 

and included data processing, astrometry, and photometry of these data. Data reduction and 

analysis techniques were used to calculate extinction coefficients and zeropoints to correct for 

observing through the Earth’s atmosphere. This project concluded with determining exo-

atmospheric calibrated magnitudes for eleven white dwarfs in all filters, with some filters having 

a few more stars complete. Future work will include completing the reduction and analysis for 

the current data, repeating this project for more calibration candidates, and obtaining follow-up 

spectroscopy on the observed white dwarfs to further narrow the data to a suitable sample of 

calibration stars. 

I. Introduction 

Over the course of the summer, I worked with the Experimental Astrophysics Group 

(EAG) on the Dark Energy Survey (DES). The goal of DES is to determine the nature of dark 

energy and its impact on the acceleration of the Universe. This astronomical survey will use a 

new and powerful camera, called DECam, to observe a portion of the sky in the southern 

hemisphere to study a specific form of supernovae, baryon acoustic oscillations, galaxy clusters, 

and weak gravitational lensing[1]. These particular observations will enable four different 

methods to be used in order to examine the dark energy content of the Universe.  

My contribution to the survey is in support of photometric calibration, a process which 

entails the measurement of the intensity of an astronomical object’s electromagnetic radiation as 

compared to the known magnitude, or brightness, of a defined standard star or object [2]. For my 

project, I used data collected from a telescope located at the Kitt Peak National Observatory 

(KPNO). These data contained images of DA white dwarfs (WDs), which are the remnant cores 

of stars that have ended their nuclear lives and have pure-hydrogen atmospheres [3].  These 

stellar remnants are important for comparing intensities since they are thermal sources which 

lose their stored energy at a rate defined by radiative cooling laws. DA white dwarfs also exhibit 

simple spectra, consisting of blackbodies imprinted with hydrogen Balmer lines. These 

characteristics are significant because they make these white dwarfs good calibration sources for 

future DES data. To be considered a potential calibration object, candidates must have good 

calibration qualities such as photometric stability, low levels of interstellar reddening, and a lack 

of low-mass companions [3]. My project involved performing data reduction and photometric 

standardization to further the hunt for a suitable sample of WD candidates to be used in 

calibrating the Dark Energy Survey. 

 

 



 

II.  Processing 

 In order for data from the telescopes to be useful, they must first be processed to remove 

the electronic signatures and physical features present in the raw images. Processing the images 

is important for flattening out features and distortions that would otherwise cause a lack of 

uniformity in the background signal. These distortions were taken out through the use of 

IRAF*[4], a collection of software packages developed specifically for astronomical images. The 

first of the features dealt with was the readout and amplifier noise from the camera’s electronics. 

When a CCD imager is “read” by a computer a voltage has to be applied. This voltage affects the 

photon count picked up by the pixels, and adds a static-like background noise to all the images 

taken. This artificial signal and the noise created during the amplification process are measured 

in an image known as a bias frame. Bias frames are zero-second exposures taken each night of an 

observing run with the shutter closed. This allows for only the signal from the applied voltage 

and amplifier to appear. Multiple exposures are taken for a combining process, during which the 

pixel counts are averaged to decrease the significance of any variation. This averaged image is 

then referred to as the master bias frame for a night of an observing run. This image is then 

subtracted from the science images from the corresponding night to remove the average 

background noise [5]. See Figure 1 for the noticeable effect bias subtraction has on the data.  

*IRAF is the Image Reduction and Analysis Facility, a general purpose software system for the reduction and 

analysis of astronomical data. IRAF is written and supported by the National Optical Astronomy Observatories 

(NOAO) in Tucson, Arizona. NOAO is operated by the Association of Universities for Research in Astronomy 

(AURA), Inc. under cooperative agreement with the National Science Foundation. 

 

Figure 1: An image before and after bias subtraction, showing the fringing and bad column 

features becoming more prominent after background variation was corrected. Due to display 

scaling, only the non-uniform illumination pattern is readily seen in the original image. 



 

 The next correction is the physical distortion caused by debris on the camera, filters, and 

optics system, as well as the variation in quantum efficiency for the CCD with respect to the 

wavelength of incoming light. Before the beginning of a night’s observations, the telescope is 

lined up to a “white spot” attached to the inside of the dome. Lamps are then directed towards 

this circle and images are taken at the exposure times needed in each of the different filters to 

reach one-third to one-half of the full-well capacity of the CCD. These very bright images are 

useful because they show the shading effects caused by dirt and dust that has accumulated onto 

the instrument and the quantum efficiency changes occurring across the camera. These images 

are called flat fields, and are used to remove the distortions introduced by this unwanted debris 

and changing efficiency. Just like the bias frames, multiple flat frames are taken and averaged 

together. Unlike bias frames though, dirt and dust can accumulate on the individual filters, and as 

stated before, the quantum efficiency changes with the wavelengths of light, so a master flat 

frame has to be made for each filter used [6]. 

 The last physical effect involves the silicon of the CCD chip itself. When shorter 

wavelength photons hit the silicon chip, they interact with only the first layer. However, longer 

wavelengths are capable of penetrating through the first layer, reflecting off the backing 

structures, and going back through the silicon from the other side. This effect causes interference 

with incoming photons, and leads to a pattern being created on the images where reduced or 

enhanced quantum efficiency, or the ratio of photon to electron conversion, occurs. In order to 

subtract this so-called “fringing” effect, science frames in the affected filters are median 

combined with a minmax rejection to bring out the fringing pattern. This fringe frame is then run 

through a scaling process that centers the photon counts on zero. In doing so, the subtraction of 

the fringe frame removes the fringing effects for the images [7]. 

 The final step of processing involves going back to the electronic effects. The reason this 

step is done last is to ensure the images have been trimmed during the other processes such that 

the column and row locations of pixels all line up and don’t shift from image to image. With 

CCDs, it is common to have pixels that are “dead” or “hot”. This language refers to the behaviors 

of these pixels: “dead” pixels are those that do not respond to photons or electronic signals, and 

therefore remain completely dark. In contrast, “hot” pixels are those that always appear 

oversaturated and bright [8]. While the areas affected by these pixels are considered useless for 

science purposes, they can cause problems for other procedures, like astrometry, and therefore 

must be removed from the processed images. The removing of these bad pixels is done through 

defining the location of the columns and rows affected, and then having a program take these 

locations, average the good pixel counts around them, and mask in a synthetic signal for the bad 

pixels. With this final step accomplished, the processing of the images is complete, and the 

images are ready for astrometric measurements. See Figure 2 for a comparison between an 

original or “raw” image and a fully processed image.  



 

 

Figure 2: A processed image before and after bias, flat, fringing, and bad pixel correction. While 

it can be argued that the original image is more aesthetically pleasing, the processed image is far 

more useful for scientific purposes. 

III.  Astrometry 

 Astrometry is the measurement of the positions and movements of stars and other 

celestial bodies. Its fundamental function is to provide astronomers with a reference frame to 

report their observations in [9]. For this project, the intention was to astrometrically calibrate the 

images so that the x,y position of a star in an image was linked to its position in the sky. This 

allows for the cross-identification of stars in the data with external catalogs based upon their sky 

coordinates. In this way, magnitudes of these stars could be compared to those reported by other 

surveys for the same stars. This comparison is important for determining how the magnitudes of 

the new data need to be corrected in order to fit into a standardized system. The standardizing 

process will be explained more thoroughly in the photometry and data reduction section.  

 To begin the astrometry process, the first thing extracted from each image was the rough 

Right Ascension and Declination (RA and Dec) for the center of the frame, which are analogs of 

longitude and latitude for the night sky [10]. These coordinates, along with other pieces of 

information, are stored for each image in the object frame’s “header”. This extracted information 

and the image are then entered into SExtractor [11], a program that takes the input image and 

rough location and creates a catalog of detected objects in the frame and cross-references the 

locations to a catalog from a different survey. In our case, we used the 2-Micron All Sky Survey 

(2MASS)[12] because it is a survey of the entire sky, which includes the sections that will be 

surveyed in the DES footprint. The output catalog gives a rough estimate of each star’s location 

within the field, but this estimate is usually not a perfect match, so more corrections are done 



 

with IRAF using the ccmap routine. See Figure 3 for an example of how the astometry was 

made more precise through the use of SExtractor and then the ccmap routine. 

 

Figure 3: Three images side by side, showing the original RA and Dec locations, the corrected 

locations, and finally the ccmap corrections for fixing the centering. The green circles indicate 

the positions of stars from the 2MASS catalog. Note how the positions improve as one goes from 

the left image to the right image. 

IV.  Photometry and Data Reduction 

 As stated before, photometric calibration is a form of measuring the intensity of an 

astronomical object’s electromagnetic radiation as compared to a known magnitude for a defined 

standard object. For this project, the photometry was done using a combination of SExtractor and 

IRAF. SExtractor was used to extract the magnitudes of all the objects in the astrometry files that 

had been detected. These files were checked to see if the white dwarfs were found and extracted 

by doing a search for their RA and Dec, and those that were not found were extracted using the 

phot command in IRAF, which acts as a photometry package. 

 After extraction, the first step of data reduction was to create a combined southern 

hemisphere standards data sheet using the SDSS u’g’r’i’z’ photometric system [13]. This was 

created to compare these known magnitudes to the instrumental magnitudes of the standard stars 

observed in the data. In order to compare the data, the colors, or difference between magnitudes, 

that were reported and their respective errors given in the original standard star files had to be 

converted to actual magnitudes and uncertainties using the following equations:  

r = r    σr = σr 

r + (g-r) = g   σg = sqrt((σr)
2
 + (σg)

2
) 

   g + (u-g) = u   σu = sqrt((σg)
 2

 + (σ(u-g))
 2

) 

   r – (r-i) = i   σi = sqrt((σr)
 2

  + (σ(r-i))
 2

) 

   i – (i-z) = z   σz = sqrt((σi)
 2

  + (σ(i-z))
 2
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 Once the data was converted, the observed data was separated by filter, because the 

extinction coefficients and zeropoints needed to change the instrumental magnitudes to 

standardized magnitudes are filter specific. To elaborate, the extinction coefficient is a measure 

of the light scattered out of the incoming optical path from a star due to the atmosphere. The 

zeropoint is a magnitude offset created arbitrarily between the instrumental magnitude corrected 

with the extinction coefficient and the actual magnitude above the atmosphere [14]. In order to 

calculate these two variables, the filter separated data was matched using TOPCAT, an 

astronomical plotting package [15], via RA and Dec with the standard star sheet so that 

spreadsheets with only observed standard star data remained. These matched data sheets were 

then plotted in TOPCAT, and data points were removed that were over-saturated, had magnitude 

uncertainties greater that 3%, or had focusing errors. The remaining data were plotted with 

airmass (the relative amount of atmosphere a star was viewed through normalized to the 

observer’s zenith) versus the delta magnitude (standard magnitude minus instrumental 

magnitude). A linear correlation was fit to the plotted data, and the slope was determined to be 

the extinction coefficient, while the y-intercept became the zeropoint. See Figure 4 for an 

example of one of these procedures. Once these variables were determined for every filter in 

each night of every directory, the exo-atmospheric magnitudes for the white dwarfs were 

determined via:  

Exo-Atmospheric Calibrated Mag. = Instr. Mag. + Zpt – (Extinction Coefficient * Airmass) 

 

 



 

 

Figure 4: A linear correlation plot showing the calculation of the extinction coefficient (slope) 

and zeropoint (y-intercept) for a u-band filter. The color scale gives the uncertainty of the 

observed magnitudes. 

V.  Results 

No. of Total WDs in Data 36 

No. of u’ Obs. 13 

No. of g’ Obs. 13 

No. of r’ Obs. 13 

No. of i’ Obs. 12 

No. of z’ Obs. 11 

 

Table 1: This table gives the final count for white dwarfs in the data and the number which have 

completed the process to having exo-atmospheric calibrated magnitudes by filter. 

 

 



 

VI.  Conclusions and Future Work 

 While the work is part of an ongoing program, this summer’s project successfully 

completed the processing, astrometry, and photometry procedures, and began the reduction and 

analysis of the data for several white dwarfs in the survey area. The standard stars observed were 

used had to determine extinction coefficients and zeropoints for each usable night and applied 

these to the white dwarfs in the observations. Some of these white dwarfs have already 

undergone the first stage of the correction process for standardizing the magnitudes for them. 

Work on this project will be continued at Austin Peay State University and will include 

completing the reduction and analysis of the white dwarfs observed at Kitt Peak as well as 

repeating this project for data from the Cerro Tololo Inter-American Observatory (CTIO), which 

will add up to 115 more white dwarfs for analysis. Spectroscopy will also be taken of these 

calibration candidates to determine effective temperatures, surface gravities, and possible Helium 

contamination in the atmosphere. The combined effort of the photometric calibration and 

spectroscopy will further determine which white dwarfs observed will become calibration stars 

for DES.  
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